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Abstract

Usually piezoelectric actuators operate in resonance mode, and to achieve the modal shape needed, it’s necessary to

obtain the exact dislocation of excitation zones. In order to use an actuator for ultrasonic devices, it must meet specific

requirements for contact point movement, i.e., the trajectory of a contact point must have elliptical form. Changing

geometrical parameters of dynamical structures can maximize effective work. Such kind of simulation leads to an unstable

sequence of structural modal shapes, i.e., the structure of the same shape but different geometrical parameters has a

different sequence of the modal shapes. Problem arises when we try to automate the actuator modelling process. Solution

of the problem usually doesn’t converge, and the numerical analysis becomes meaningless.

This paper presents a study of optimizing electrodes dislocation of ultrasonic actuators. The following conditions of

optimization problem are considered: to unify excitation voltage forms, to achieve reverse motion and the maximum

coefficient of efficiency. Finite element method modelling is performed in calculation process. The results of calculations

for the piezoelectric drive are shown for two options of fixing conditions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A great number of ultrasonic devices such as positioning drives, micromanipulators, micropumps, transducers for
measuring physical properties of materials, transmission of motion into vacuum chambers without power losses,
converters, vibration concentrators, scanners, etc. are based on utilization of the particular resonance oscillations of a
piezoelectric actuator. In most cases these devices simply lose their ability to operate if actuators vibrate in different
frequency, because the modal shape of an actuator does not meet the requirements [1]. Modelling of the piezoelectric
actuator can be divided into following steps: simplified analytical study, numerical simulation using finite element
method (FEM), optimization of the actuator and development of the control scheme. Optimization problem has the
following steps: optimization of dimensions of the actuator and optimization of configuration of the electrodes
dislocation. Optimizing dimensions of the actuator, results from modal-shape analysis are used [2,3]. So it is
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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important to know sequence of modal shapes, because it changes when dimensions of the actuator are changing.
Unstable sequence of the modal shapes prevents automation of optimization process.

When piezoelectric actuator is tied up with particular resonant frequency and modal shape, optimal
dislocation of excitation zones must be found. The optimal configuration of electrodes gives an opportunity to
reduce the concentration of mechanical stresses and maximize amplitudes of vibrations. This fact is especially
important for the multi-degrees of freedom (MDOF) ultrasonic actuators. In order to achieve the maximum
coefficient of efficiency of piezoelectric actuators, the surface of an actuator must be fully covered with
electrodes and excited only in corresponding zones. When FEM is used for simulations, precision of
calculations for the excitation zone dislocations within the limits of the area of a finite element is achieved.
Optimization of electrodes configuration also tied up with results from modal shape analysis [4].

This paper gives a study of eigenvalue problem and its relevance to optimization of electrodes configuration
of piezoelectric actuator.

2. Problem definition

Since the analysis of a multidimensional piezoelectric actuator cannot be performed without considering the
vibration device, most often the problems of piezoelectric actuator research are solved in an integral fashion
taking into account the whole device. In order to use actuator for ultrasonic devices, it must meet specific
requirements for contact point movement, i.e., the trajectory of contact point must have elliptical form. This
could be achieved when MDOF oscillations are excited. The shape and optimal location of the electrodes on
the surface of an actuator have great importance to vibration mode of an actuator. Using different
configurations of electrodes, vibration of the main and higher resonance modes of an ultrasonic actuator could
be achieved [5]. In case of the optimal electrode configuration, needless harmonics of an actuator could be
eliminated and the concentration of mechanical stresses could be reduced. These facts are very important in
case of MDOF oscillations of an actuator that is analysed in this paper.

The formal algorithm for solving the problem looks as follows: Fig. 1. In the case under consideration, at
the first stage the geometrical parameters of a piezoelectric actuator are changed. At the second stage a matrix
of eigenvalues is formed, whose every column describes a corresponding modal shape; the first column
describes the first modal shape, the second column—the second shape and so on. While changing the
geometrical parameters of a piezoelectric actuator the change in the modal shape sequence has been observed.

Using the technical oscillation theory of a beam the longitudinal oscillations are found by solving the
second-order differential equation [6]:
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where s is cross-section area.
Longitudinal oscillations of the beam can be expressed as follows [6]:
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E is the Young’s modulus; k is the mode number of the longitudinal oscillations; l is the length of a beam; and
r is mass density.

Flexural oscillations of a beam are found by solving the second-order differential equation [6]:
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Flexural oscillations of a beam are described by the expression [6]:
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h is the height of a beam; and n is the mode number of flexural oscillations.
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Fig. 1. The structure of the general calculation algorithm.
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If certain values of k and n are defined, then h/l ratio of the beam could be calculated. From Eqs. (2) and (4)
the following equation could be obtained:

h

l
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k

pðnþ 0:5Þ2
. (5)
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As an example:

k ¼ 1; n ¼ 2)
h

l
¼ 0:1765, (6)

but h/l ratio could be changed, for example, increasing or reducing the height of a beam. In this case k value
remains the same, but n value changes. This means that the sequence of modal shapes changes when the
geometrical parameters of a beam vary. Calculations of MDOF piezoelectric actuators, of course, have the
same problem, but is very difficult or even impossible to solve it analytically. Modal shape sequence exchanges
often cause fatal errors in the calculation process as well as unexpected errors in results [3]. And it means that
at the second stage of solving the problem an incorrect value of ok (natural frequency) can be chosen. This
problem is also important for solving optimization problems because calculations are usually related not only
to a particular natural frequency of a piezoactuator but also to its modal shape. Therefore, it is necessary to
recognize numerically modal shapes and to determine their location (column numbers) in the matrix of modal
shapes for the construction model. For solving this problem we will apply the energy solution method
analysed in Section 3.

Having chosen the suitable value of ok we can further solve the problem of an optimal configuration
of multidimensional piezoactuator electrodes. The shape and optimal location of the electrodes on the
surface of an actuator have great importance to the vibration mode of an actuator. Using different
configurations of electrodes, vibration of main and higher resonance modes of a piezoelectric actuator
could be achieved. In case of the optimal electrodes configuration, needless harmonics of an actuator
could be eliminated and the concentration of mechanical stresses could be reduced as well. These facts
are very important in case of MDOF oscillations of an actuator that are analysed in Section 5 of this
paper.

3. An algorithm for modal shape identification

When the modal frequencies analysis of MDOF actuators is done using FEM, dominating com-
ponents of the oscillations can be found referring to the energetic method of the oscillation analysis,
because amplitudes raised to the second power are proportional to the energy of the oscillations. In that
way the ratios (dominating coefficients) of the components of amplitudes in all directions can be found
and the direction with the maximum of amplitudes can be defined. Let’s calculate the following
sum [2,3]:

Sb
p ¼

Xr

i¼1

ðAb
ipÞ

2; r ¼
q

p
; (7)

Sb
p is the sum of oscillations amplitudes in p direction; Ab

ip is the amplitude of oscillations of i element of modal
shape vector in p direction; r is the size of modal shape vector for p coordinate; q is the degrees of freedom
(dof) of actuator model; p is the number of dof in the node.

The dominating coefficients of the model can be expressed as follows [2,3]:

mb
jk ¼

Sb
j

Sb
k

; jak. (8)

The physical meaning of dominating coefficients is the ratios between different oscillation energy
components in the directions of coordinate axes. The sum Sb

k defines the energy of the oscillation of the b

natural frequency in k direction and the dominating coefficient mb
jk defines the relation of the oscilla-

tion energies in i and j directions of b natural frequency. Dominating coefficients have the following
characteristic [2,3]:

mb
kj ¼

1

mb
jk

; jak. (9)
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Based on dominating coefficients we could determinate the type of dominating oscillations and also define the
level of correlation of MDOF oscillations as follows:

mb
kj ¼ t) lg t ¼ 1; 2; 3; . . . , (10)

where t is the variable, defining correlation of the frequencies.
Dominating coefficients is a means to define the type of structure oscillation and to sort modal shapes by

dominating type of the oscillations for example longitudinal, flexural, and torsional. In order to finally identify
modal shape additional criteria must be used. We offer to use the number of node points or the number of
node lines of the modal shape for regular mechanical structures as additional criteria (Fig. 2).

During calculations the number of nodes points or lines could be found by referring to the alternation of the
sign of the oscillation amplitude around the equilibrium level (Fig. 2). The exchanges in the modal shape
sequence are a general case problem concerning not only piezoelectric actuators, but also all mechanical
structures.
4. Numerical investigation and results

Based on the algorithm of modal shape identification, numerical testing was carried out. A two-dimensional
(2D) plane structure, a cylinder and an irregular structure were tested (Fig. 3).

The aim of the numerical analysis was to determine the dependencies of modal shape sequence on
geometrical parameters of the structure. Exchanges of modal shapes of the second and third natural
frequencies of a 2D plane structure are shown in Fig. 4. Dominating coefficients m12 represent the ratio of
oscillation energy in x and y directions of coordinate axes, respectively. The analysis of modal shapes of a
cylinder must be done taking into account the ration of cylinder wall thickness and internal radius. When the
ratio of the wall thickness and radius is 0.25oh/Rvido0.5, the transition from thin-layered cylinder modal
shapes to thick-layered cylinder modal shapes happens. This does not depend on cylinder boundary
conditions. Dependences of the dominating coefficient m13 of cylinder third natural frequency (Fig. 5) show
exchanges of modal shapes.

Investigation of dominating coefficients of an irregular structure was done separately for each structural
component. Most irregular structures can be divided into a set of regular structures, so analysis of dominating
coefficients of a set of regular structures is more accurate and more sensitive to the changes of modal shape of
a structure. The dependence of the dominating coefficient m12 of horizontal and vertical bars (Fig. 6) exactly
Fig. 2. Modal shape identification of the regular mechanical structures: (a) beam, (b) plate, and (c) cylinder.

Fig. 3. FEM models of the analysed mechanical structures: (a) two-dimensional plane structure; (b) cylinder; and (c) irregular structure.
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Fig. 5. The dependence of the dominating coefficient m13 of cylinder length for the third natural frequency. Wall thickness of a cylinder is

0.0025m. –m–R ¼ 0.005m; –E–R ¼ 0.0078m;–’– R ¼ 0.01m; –K– R ¼ 0.015m.

Fig. 6. The dependence of the dominating coefficient m12 of an irregular structure. –m–1n.f.hor.; –E– 1n.f.vert.; –’– 2n.f.hor.;

–K–2n.f.vert.

Fig. 4. The dependence of the dominating coefficient m12 on the length and height ratio l/h of a two-dimensional plane structure for the

second and third natural frequency when the left side nodes are fixed. –K–2n.d., –m–3n.d.
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shows exchanges of modal shapes of an irregular structure depending on the length and height ratio of the
vertical bar.

When an irregular structure, e.g., a plate with an aperture, is in consideration, dominated coefficients are
distributed differently then usual depending on the ratio l/h. Therefore, dominating coefficients could be
applied more widely. We could apply them in the process of fault identification.

5. Optimization analysis

In order to obtain the optimal electrodes configuration of an actuator, the following requirements of a
piezoelectric system have to be met: to use unified generator of electric signal, to achieve reverse motion and
the maximize efficiency. Realization of the first requirement means that the source of current has to generate
voltage of stable frequency, amplitude and phase in order to simplify construction of the machine, second—
that reverse motion must be achieved by changing the polarity of the electric flux and third—that the actuator
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must be fully covered with the electrodes. When all aforementioned conditions are achieved, any mode shape
of the ultrasonic actuator could be obtained by changing polarity of the voltage, supplied to a particular
electrode. In order to find the sign of the polarity corresponding to a certain modal shape, the comparisons
between the directions of the vector of amplitude of the equivalent mechanical force and a particular
eigenvector of the actuator must be made. If the direction of the displacement eigenvector of the piezoelectric
actuator and the vector of amplitudes of the equivalent mechanical force is the same or similar, i.e., the angle is
within the limits [�p/2; +p/2], then the polarity of the voltage, supplied to a particular electrode has the initial
sign. In the other case, the sign of polarity must be changed. So depending on the angle of aforementioned
vectors, the polarity of voltage is defined.

The basic dynamic FEM equation of motion for piezoelectric transducer that is fully covered with
electrodes can be expressed as

M€dþ C_dþ Kd� Tj ¼ F; TTdþ Sj ¼ Q, (11)

where M, K, T, S, C are the matrices of mass, stiffness, electro elasticity, capacity and damping, respectively;
d,j,F,Q are the vectors of nodes displacements, potentials and external mechanical forces, charges coupled on
the electrodes respectively.

The operating frequency of the ultrasonic actuator is close to the resonance, so the excitation voltage must
have the same frequency [4]:

M€dþ Kd� Tj ¼ 0; TTdþ Sj ¼ 0. (12)

The natural frequency and normalized displacement eigenvectors are derived from the modal solution of the
piezoelectric system and used in further optimization analysis.

Because of the first objective of optimization to unify excitation voltage, the potential of electrodes of all
piezoelements must be equal as shown in equation [5]:

je ¼ Uesge sin okt; sge ¼
þ1;

�1;

(
(13)

where Ue, sge, ok are the vector of element excitation voltage amplitude, modified sign function and k is
resonance frequency, respectively. When the vector of the external mechanical forces is set to zero in Eq. (11),
we obtain the following equations:

M€dþ C_dþ Kd ¼ �F, (14)

Here,

F ¼
X

e

LeTeUesge sin okt ¼
X

e

Fe sin okt; (15)

where F is the vector of external equivalent mechanical forces; Fe is the vector of amplitude of external
equivalent mechanical force at the nodes of a finite element in a global coordinate system; Te is the matrix of
electroelasticity of a finite element; Le is the matrix of transformation between local and global element
coordinates.

Here,

Fe ¼ LeTeUesge. (16)

The solution of the basic dynamic FEM equation of motion for a piezoelectric actuator could be written in the
following form:

d ¼ D0z tð Þ, (17)

where D0 is normalized eigenvectors; z(t) is the coefficient of proportionality.
Here,

D0 ¼ d01; d02; . . . ; d0n½ �. (18)
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The coefficient of proportionality could be obtained from equation:

€zi þ 2oihi _zi þ o2
i zi ¼ �dT0iF; i ¼ 1; 2; . . . ; n. (19)

Solving Eq. (19) we could calculate coefficient zk(t), that corresponds to k natural frequency of the actuator.
Now let us analyse the effective work of the external forces when electrodes of an actuator are excited.

Referring to the third requirement of optimization problem to obtain the maximum of the coefficient of
efficiency, the effective work of an actuator Aef

k must be maximized. The average effective work, corresponding
to the k natural frequency could be obtained as follows:

max Aef
k ¼

ok

2p

Z 2p=ok

0

dT0kFzkðtÞdt. (20)

If we insert Eq. (14) into Eq. (19), the following expression of the effective work could be obtained:

max Aef
k ¼

ok

2p

Z 2p=ok

0

X
e

dT0kF
e sin oktzkðtÞdt. (21)

Eq. (20) could be rewritten in the form:

max Aef
k ¼

X
e

dT0kF
ePk ¼

X
e

d0j jk Fej j cos ge
kPk, (22)

Here,

Pk ¼
ok

2p

Z 2p=ok

0

sin ðoktÞzk tð Þdt;= (23)

Based on Eq. (23) we can see that Pk is time-independent and referring to particular conditions d0k is constant
also, so only the product of the vector of the amplitude of the equivalent mechanical force and the eigenvector
of an ultrasonic actuator must be maximized. In order to achieve the maximum value, directions of the vectors
must be same or similar, i.e., cos ge

k is the cosine of the angle of aforementioned vectors must be maximized.

cos ge
k ¼

dT0kF
e

d0j jk Fej j
. (24)

As we can see from Eq. (24), the sign of cos ge
i depends only on the direction of the vector of the equivalent

mechanical forces in a finite element. Referring to Eq. (16), the direction of the vector could be changed by
changing the polarity of the voltage. Based on Eq. (13), the polarity of the voltage supplied to the element
depends on the sgj. The maximum of oscillation of the amplitude, depending on a certain modal shape of the
piezodrive, is achieved when directions of the eigenvector and the vector of amplitudes of the equivalent
mechanical force are similar, i.e., when value of sgi is identical to the sign of cos ge

k.

6. Processing and results

Calculations were carried out with a 2D piezoelectric actuator. The vector of actuator polarization is
perpendicular to the paper plane, and all the structural dof of central nodes of the actuator are constrained.
Initial values of electrical potential on electrodes are set to zero. The results of calculations cos ge

k are given in
the centre of gravity of the element. Based on the sign and values of cos ge

k, few zones of electrode location
could be obtained (Fig. 7). Zones with different polarity are separated with a bold line. For comparison, in
Fig. 8 we can see the configuration of electrodes for the same type of actuators created by the intuition of an
engineer. These kinds of actuators are used in ultrasonic motors with rotational and linear motion. Values of
cos ge

k are given in the centre of gravity of the elements. The vector of polarization is perpendicular to the
paper plane.

The configuration of electrodes of a piezoelectric actuator according to engineer’s intuition Fig. 8 created
for the same type of actuators as shown in Fig. 7, respectively. The vector of polarization is perpendicular to
the paper plane.
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Fig. 7. The excitation zone configuration of a piezoelectric actuator: (a) the first modal shape, and (b) the second modal shape.

Fig. 8. The configuration of electrodes of a piezoelectric actuator according to engineer’s intuition created for the same type of actuators

as shown in Fig. 7, respectively.
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7. Conclusions

Optimization of dimensions and electrodes location of piezoelectric actuators can proceed based on the
results of eigenvalue problems, and identification of the modal shape sequence is a necessary step in order to
automate optimization problem solving. The algorithm for modal shape identification must be used as an
additional stage of the usual optimization algorithm.

The numerical algorithm of the excitation zone configuration for a MDOF piezoelectric actuator has been
proposed. This algorithm is based on FEM and its accuracy of calculations depends on the limits of the area of
a finite element. Using this optimization algorithm, the problem of durability and reliability of actuators could
be solved.
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